

PHYSICS

Quantities Having Same Dimensions

No.	Dimension	Quantity
1.	$[M^{0}L^{0}T^{1}]$ $[ML^{2}T^{-2}]$	L/R, \sqrt{LC} , RC where L = Inductance. R = Resistance, C = Capacitance I^2Rt , $\frac{V^2}{R}t$, VIt, qV , LI ² , $\frac{q^2}{C}$, CV ² where I = Current, t =Time, q = Charge, L = Inductance, C = Capacitance, R = Resistance

Acceleration-Time Graph

S. No.	Description of Motion	Shape of Graph	The Main Feature of Graph
1.	If a body is moving with constant decreasing acceleration, then acceleration-time graph is a straight line.	Acceleration Acceleration B	The body is moving with negative acceleration and slope of straight line which makes an angle $\theta > 90^{\circ}$ with time axis.
2.	If a body is moving with constant increasing acceleration, then acceleration graph is a straight line OA.	Acceleration 4	The body is moving with positive acceleration and slope of straight line OA makes an angle θ < 90° always with time axis.
3.	If a body is moving with a constant acceleration, then acceleration-time graph is a straight line AB, paralled to time axis.	Acceleration — P	The area is enclosed by acceleration time graph for the given time which gives the velocity of the body after the given time.

Displacement-Time Graph

S. No.	Description of Motion	Shape of Graph	The Main Feature of Graph
1.	If a body returns back towards the original point of reference while moving with uniform negative velocity, the time-displacement graph is an oblique straight line AB_r making an angle $\theta > 90^\circ$ with the time axis.	placement.	The displacement of the body decreases with time with respect to the reference point, till it becomes zero.
2.	If a body is moving with infinite velocity, then time-displacement curve is a straight line AB parallel to displacement axis.	1 1 1 1	Such motion of a body is never possible.
3.	If a body is moving with a constant retardation, the time displacement graph represents a curve bend downwards.	Displacement —	The slope of time-displacement curve (i.e. instantaneous velocity) decreases with time.
4.	If a body is moving with a constant acceleration, then time-displacement graph is a curve with bend upwards.	Displacement	The slope of time-displacement curve (i.e. instantaneous velocity) increases with time.
5.	If a body is moving with a constant velocity, then time-displacement graph will be a straight line OA, inclined to time axis.	Displacement	Greater is the slope of straight line OA, higher will be the velocity.
6.	For a body which is at rest, time displacement graph will be a straight line AB parallel to time axis.		The slope of straight line AB (representing instantaneous velocity) is zero.

Velocity-Time Graph

S. No.	Description of Motion	Shape of Graph	The Main Feature of Graph
1.	If a body moving with decreasing acceleration, then velocity-time graph is a curve.	Nelocity O Time ->	The slope of velocity-time graph (i.e. instantaneous acceleration) decreases with time.
2.	If a body is moving with increasing acceleration, then velocity-time graph is a curve with bend upwards	Nelocity O Time →	The slope of velocity-time graph (i.e. instantaneous acceleration) increases with time.
3. ,	If a body is moving with a constant retardation and its initial velocity is not zero, then velocity-time graph is an oblique straight line AB, not passing through origin.	A Nelocity B	The slope of this straight line with time axis. makes an angle $\theta > 90^{\circ}$
4.	If a body is moving with a constant acceleration and its initial velocity is not zero then velocity-time graph is an oblique straight line AB not passing through the origin.	A C B B B B T Time T	(a) Here OA represent the initial velocity of the body.(b) The area enclosed by the velocity-time graph with time axis represents the distance travelled by the body.
5.	If a body is moving with a constant acceleration and its initial velocity is zero, then velocity-time graph is an oblique straight line passing through the origin.	Nelocity A Time →	Greater will be the slope of straight line OA so, greater will be the instantaneous acceleration.
6.	If a body is moving with a constant velocity, the velocity-time graph is a straight line AB paralled to time axis.	A A B Time →	The slope of velocity-time graph (i.e. instantaneous acceleration) is zero.